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It has been known for decades that acute neuronal damage caused by stroke, traumatic injury, infection, 

subarachnoid hemorrhage, and other central nervous system (CNS) insults sets in motion a complex cascade of 

events that ultimately leads to the formation of a long-lived glial scar (Fig. 5.1). The ability of glial scars to inhibit axon 

growth has provided strong motivation to determine the cellular and molecular mechanisms involved in their 

formation. Moreover, manipulation of injury-induced gliotic scars could be of great clinical relevance and, thus, this 

has become an important goal in the neurosciences.  

 

PART I: THE CNS REACTION TO INJURY  

 

In this review, we summarize the processes that lead to scar formation and examine what is known about the 

functional roles for two types of glial cells involved (astrocytes and microglia). We also examine one potential modifier 

of scar formation, thrombin, and its receptor, protease-activated receptor-1 (PAR-1). Because of space limitations, we 

do not consider in detail the processes of neuronal death, blood-brain barrier (BBB) breakdown, proteoglycan 

inhibition of axon growth, or the expression and roles of cytokines in neurodegeneration. We refer the interested 

reader to several excellent reviews on these topics (6, 17, 75, 233, 246).  

 

Step 1: Neuronal Death  

 

Common pathways of neuronal cell death in response to diverse insults, such as hypoxia, ischemia, or trauma, 

include early disruption of ion homeostasis, increased release and impaired uptake of neurotransmitters (such as 

glutamate), excessive neuronal activation, cellular swelling, intracellular entry of divalent cations, and release of nitric 

oxide and free radicals. These changes in cell physiology lead to both apoptotic and necrotic cell death, and set in 

motion the development of a gliotic scar (9, 14, 28).  

 

Step 2: Inflammation  

 

The first cell type to respond to injury is the microglia (Fig. 5.2). On activation, these CNS macrophages phagocytose 

apoptotic cells and necrotic debris; release proinflammatory cytokines, chemokines, and reactive nitrogen species; 

and up-regulate surface expression of specific receptors, such as major histocompatibility complexes (MHC) I and II. 

Microglial release of cytokines, such as tumor necrosis factor ƒÑ (TNF-ƒÑ) and interferon ƒ× (IFN ƒ×); and 

chemokines, such asƒnmacrophage inflammatory protein 1-ƒÑ (MIP1 ƒÑ) and interleukin-8 (IL-8), recruit peripheral 

white blood cells to the site of damage.  

 

Breakdown of the BBB, which is composed of endothelial cells and astrocytes, occurs concurrently with microglial 

activation. This breakdown appears in response to the release of various cytokines, reactive oxygen species (ROS), 

glutamate, adenosine triphosphate (ATP), bradykinins, histamine, and nitric oxide from neurons, activated microglia, 

and the endothelial cells themselves. Breakdown of this barrier facilitates the translocation of plasma-derived 



molecules into the brain (17). Several studies, including our own work, suggest that this influx of blood-derived 

molecules is a critical step in the formation of a glial scar. Consistent with this notion, areas of greatest glial scarring 

are often found near regions of the largest BBB breakdown (202). Moreover, breakdown of the BBB contributes to the 

posttraumatic inflammatory response by increasing extravasation of blood-borne neurotrophins, macrophages, and T- 

and B-lymphocytes, which may trigger further brain damage (17). Because CNS inflammation is largely propagated 

by microglia and infiltrating immune cells, neuroinflammation has a complicated effect on CNS health and recovery 

(72).  

 

Step 3: Oligodendrocyte Precursor Proliferation  

 

Oligodendrocyte precursor cells (OPC) are recruited by inflammation to the site of injury within 2 days of the injury, 

and their numbers increase for the following 2 weeks (124). Although these cells are activated by neuronal damage, 

proliferation requires at least some demyelination of neurons (67). Because of the close proximity of OPCs to 

synapses and nodes of Ranvier, as well as the involvement of OPCs in excitatory transmission, it is not clear whether 

OPCs are responding to a growth factor released by myelin sheath breakdown or whether OPCs are sensitive to 

changes in neuronal conduction (22, 40, 42, 123). Regardless of what causes their proliferation, expansion of OPCs 

inhibits neural cone growth, caused, in large part, by the release of inhibitory extracellular matrix molecules known as 

chondroitin sulfate proteoglycans (CS-PGs) (45, 72, 125). The family of large CS PGs found in the CNS consists of 

aggrecan; versican; neurocan; brevican; and phosphacan, a molecule that can exist in two forms: as the receptor 

tyrosine phosphatase or as the truncated secreted molecule DSD-1/phosphacan (72, 122). CS-PGs appear within a 

day after injury and persist for several months thereafter (145, 219). In addition to the observation that CS-PG 

expression is increased in areas of gliosis, it is also reported that axon regrowth stops where the CS-PGs are 

deposited (62, 63). Further, in vivo and in vitro assays show that blockade of CS-PG signal transduction is permissive 

for axonal growth (203).  

 

Step 4: Astrocytic Activation  

 

Astrocytes are involved in a wide range of important functions, such as physically supporting CNS vasculature, 

providing metabolic substrates to neuronal dendrites and synapses, and maintaining ionic and neurotransmitter 

balance in the extracellular space (165). In response to injury, astrocytes undergo many cellular changes, leading 

them to adopt a ¡§reactive¡¨ phenotype (Fig. 5.2). As with microglia, the astrocytic response to injury proceeds 

through several stages and depends on the extent of trauma. Soon after injury, there is a rapid increase in the 

synthesis of glial fibrillary acidic protein (GFAP) that can extend far from the actual site of damage (2). This is 

followed by the appearance of small and slender GFAP-positive processes, which in several days become fully 

stellarized, fibrillary astrocytes. Long-standing hypotheses suggest that reactive astrocytes create a physical barrier 

between damaged and healthy cells and re-establish an intact BBB (71, 187). However, given the wide array of 
signaling systems involved in the astrocyte response to injury, it seems likely that additional roles will emerge.  

PART II: MICROGLIAL RESPONSES TO CNS INJURY  
 
As the resident macrophages of the CNS, microglia are the primary source of innate and adaptive immune responses 
within the brain. They are main players in mediating neuroinflammatory cascades, by expressing and/or releasing a 
number of different cytokines, chemokines, and receptors (see Figure 8.31). Their ability to become activated 
throughout the course of neuropathic stimuli, such as invading pathogens, cell death, and hypoxia, allows microglia to 



respond to, and, at times, contribute to, neuropathology. Although neuroprotective and restorative roles of reactive 
microglia in models of acute and chronic neuropathologies have been documented, examples of the detrimental 
effects of microglial activation are evident in recent studies (1, 20, 141, 157, 166, 210). Not only is rapid microgliosis 
considered the most immediate and harmful of glial responses in the pathogenesis of acute CNS trauma, prolonged 
microgliosis is also known to exacerbate continuing damage in various neurodegenerative illnesses (88).  
 
Triggers and Regulators of Microgliosis  
 
As illustrated in (Fig. 5.4), microgliosis is characterized by a complex set of events, including changes in microglial 
morphology, increased proliferation, migration to a site of damage, phagocytosis, antigen processing and 
presentation, up-regulation of numerous cell surface and secreted signaling molecules, and apoptosis. Substances 
that trigger microgliosis fall into three categories: 1) those that signal the invasion of foreign organisms, 2) those that 
signal local cellular damage and death, and 3) regulatory signals from other cells.  
 
In the category of pathogen invasion signals, pathogen-associated molecular patterns, such as bacterial and viral 
surface proteins, sugars, and proteoglycans, as well as unmethylated DNA, are some of the most potent and reliable 
activators of microglia (60, 174). In the second category, cell damage and death trigger the presentation of cell injury 
signals, such as membrane exposure of phosphatidylserine, or the release of ATP and sialic acid¡Vcontaining 
glycosphingolipids (e.g., gangliosides), which induce proinflammatory cytokine and ROS production in microglia (153, 
185). Additionally, hypoxia may be a direct signal for activation, because it triggers microglial expression of a 
proinflammatory cytokine, IL-1ƒÒ (111). Senile plaque¡Vassociated proteins, such as ƒÒ-amyloid and chromogranin 
A, are also strong signals that stimulate microglia (49, 52, 147). In the third category of regulatory signals, modulators 
from other cells, including certain surface molecules, cytokines, chemokines, and proteases, can activate and also 
regulate the function of microglia (see Figure 8.3). Interestingly, ATP is also an example of a regulatory signal 
released from astrocytes that can serve as a chemotactic, a mitogenic, and an apoptotic signal for microglia (100, 
185, 229).  
 
Microglial Migration and Proliferation  
 
Migration of microglia to sites of infection or injury can be observed in culture in hippocampal slices and in murine 
models of brain damage (171, 178, 184). Several chemotactic signals mediate the recruitment of microglia, as well as 
other immune cells, to areas of brain damage and, thus, are essential for the spatial coordination of a local 
neuroimmune response. Chemokines, such as monocyte chemoattractant protein-1 (MCP-1/CCL2), RANTES/CCL5, 
MCP-2/IL-8/CCL8, IFN-ƒ×¡Vinducing protein-10 (IP-10/CXCL10), are a family of chemoattractants known to stimulate 
microglial and other immune cell migration (56, 181). CXCR3, a chemokine receptor for CXCL10/IP-10, has been 
shown to promote microglial movement to a lesion site in the entorhinal cortex and increase local neuronal loss (184). 
Among other molecules, ATP, ƒÒ-amyloid, and complement factor 5a are also found to induce microglial migration 
(100, 117, 171). Chemotaxis will be important in cases of localized brain injury, such as in lacunar strokes (Figure 
8.5) , where damage in a small region may recruit outlying microglia to amplify local microgliosis. However, the role of 
chemotaxis in microglial response to global CNS insults is still unclear.  
 
Cell death is thought to activate microglial proliferation in experimental injury models of excitotoxicity and ischemia 
(68, 94, 119, 128). However, even in the absence of neuronal loss after transient global ischemia, microglial 
proliferation peaks within 4 days in the striatum and neocortex, suggesting that microgliosis does not require overt 
brain injury (128). In addition to cell death signals, various factors, such as macrophage colony-stimulating factor (M-
SCF) granulocyte-macrophage colony-stimulating factor (GM-CSF), corticotropin-releasing hormone, and thrombin, 
can stimulate microglial cell proliferation (113, 130, 154, 212, 238). The release of these factors together with cell 
death signals may synergistically contribute to the microglial proliferation observed during CNS damage. Interestingly, 
microglial numbers return to baseline levels 30 days after excitotoxic injury, indicating the removal of activated 
microglia after damage resolution (94). Cytokines, such as IL-4 and IL-13, induce apoptosis in microglia only after 
activation by lipopolysaccharide, gangliosides, or thrombin and may play a role in limiting the duration of microgliosis 
(245).  
 
Phagocytosis and Antigen Presentation by Microglia  



 
Phagocytosis is the receptor-mediated uptake of large extracellular particles and cells, and sets reactive microglia 
apart from reactive astrocytes. Antibodies and/or complement proteins can bind to and can target various substrates, 
such as myelin, for either Fc receptor¡Vmediated or complement receptor¡Vmediated phagocytosis, respectively (66, 
160, 222). Although apoptosis-triggered phosphatidylserine exposure on the outer membrane leaflet is the most well-
known mechanism of microglial phagocytosis of dying cells, other mechanisms for microglial recognition and 
phagocytosis of cells undergoing nonapoptotic and necrotic death also exist (98). Soluble signals, such as M-CSF, 
GM-CSF, TNF-ƒÑ, and IL-4, have also been shown to stimulate phagocytic clearance in vitro (154, 206). Antigen 
processing and presentation, as evidenced by increased MHC I and II surface expression, is also up-regulated in 
activated microglia after a variety of insults (27, 158). MHC expression is also increased by IFN-ƒ× and decreased by 
IFN-ƒÒ, indicating a dynamic regulation by cytokines (109). MHC presentation usually peaks with concomitant 
cytokine up-regulation as well as CD4+ and CD8+ T-lymphocyte infiltration into brain parenchyma, and, thus, initiates 
the adaptive neuroinflammatory response (26).  
 
Microglial activation and phagocytosis may facilitate additional neuronal cell death, but recent studies showing 
release of several anti-inflammatory and neuroprotective factors during phagocytosis suggest that not all signals of 
cellular damage induce proinflammatory reactivity and toxicity in microglia (65, 141, 215). It has not been resolved 
whether up-regulation of phagocytic function in microglia is beneficial or harmful. The clearance of pathogens, 
necrotic debris, and apoptotic cells is likely to promote healthy brain function and recovery from minor insults. 
However, targeting of intact myelin or healthy cells for destruction during unchecked neuroinflammation can be a 
direct cause of additional neuronal loss during the later phases of brain injury. Indeed, it has been reported that 24 
hours after transient exposure to ƒÒ-amyloid peptides, microglia continue to exhibit enhanced phagocytosis of 
several other unrelated substrates (114).  
 
Soluble Factors Released by Microglia  
 
During brain pathology or trauma, astrocytes, microglia, and infiltrating immune cells release and respond to both 
proinflammatory and anti-inflammatory cytokines (Figure 8.3). The role of each cytokine in brain damage and 
recovery has been difficult to analyze because of the antagonism, synergism, and redundancy inherent to the 
cytokine system (18, 148). Nevertheless, several cytokine mediators have been shown to be up-regulated after a 
variety of acute and chronic CNS insults, and many of these cytokines exacerbate glial responses to damage and 
promote neuronal cell loss in numerous brain injury and disease models (6). Among these, IL-1ƒÒ and TNF-ƒÑ are 
both up-regulated in microglia and astrocytes in cases of neurodegenerative diseases, stroke, epilepsy, brain trauma, 
and infection (19, 193, 195, 231, 233). Furthermore, both cytokines exacerbate neuronal degeneration in animal and 
cell culture models of these disorders (6, 175, 209). Specifically, exposure of cultured hippocampal neurons to IL-1ƒÒ 
induces tyrosine kinase¡Vmediated phosphorylation of NMDA receptor subunits NR2A/B, leading to consequent 
facilitation of calcium currents and increased neuronal cell death (232). TNF-ƒÑƒnhas also been recognized for its 
ability to cause cell death by both a direct p55 receptor¡Vmediated mechanism as well as an indirect suppression of 
survival signaling mechanism (228). TNF-ƒÑƒnrelease by astrocytes and microglia can suppress neurite growth and 
potentially inhibit neuronal regeneration after injury, whereas transgenic TNF-ƒÑ overexpression in the brain results 
in neuroinflammation, degeneration, ataxia, and epilepsy (3, 166).  
 
Activated microglia also release a variety of ROS and reactive nitrogen species resulting in oxidative stress and 
increased neuronal death (33, 51, 79, 143). Like cytokines, these substances are also observed at high levels in 
various neurodegenerative conditions (8). Inhibition of the inducible nitrogen oxide synthase (iNOS) after 
lipopolysaccharide administration into the substantia nigra can rescue dopaminergic neurons from cell death whereas 
microglia-secreted superoxide also contributes to degeneration of dopaminergic neurons (10, 79).  
 
Compared with cytokines, considerably less information exists regarding chemokine and chemokine receptor 
expression by glial cells during brain damage (15). Chemokine IL-8 release from microglia can promote immune cell 
infiltration and activation as well as perturb hippocampal synaptic plasticity (242). In general, chemokine inhibition has 
been effective in decreasing neutrophil and macrophage infiltration, as well as reducing lesion volumes in animal 
models of cerebral ischemia (21). 



PART II: MICROGLIAL RESPONSES TO CNS INJURY  
 
As the resident macrophages of the CNS, microglia are the primary source of innate and adaptive immune responses 
within the brain. They are main players in mediating neuroinflammatory cascades, by expressing and/or releasing a 
number of different cytokines, chemokines, and receptors (see Figure 8.31). Their ability to become activated 
throughout the course of neuropathic stimuli, such as invading pathogens, cell death, and hypoxia, allows microglia to 
respond to, and, at times, contribute to, neuropathology. Although neuroprotective and restorative roles of reactive 
microglia in models of acute and chronic neuropathologies have been documented, examples of the detrimental 
effects of microglial activation are evident in recent studies (1, 20, 141, 157, 166, 210). Not only is rapid microgliosis 
considered the most immediate and harmful of glial responses in the pathogenesis of acute CNS trauma, prolonged 
microgliosis is also known to exacerbate continuing damage in various neurodegenerative illnesses (88).  
 
Triggers and Regulators of Microgliosis  
 
As illustrated in (Fig. 5.4), microgliosis is characterized by a complex set of events, including changes in microglial 
morphology, increased proliferation, migration to a site of damage, phagocytosis, antigen processing and 
presentation, up-regulation of numerous cell surface and secreted signaling molecules, and apoptosis. Substances 
that trigger microgliosis fall into three categories: 1) those that signal the invasion of foreign organisms, 2) those that 
signal local cellular damage and death, and 3) regulatory signals from other cells.  
 
In the category of pathogen invasion signals, pathogen-associated molecular patterns, such as bacterial and viral 
surface proteins, sugars, and proteoglycans, as well as unmethylated DNA, are some of the most potent and reliable 
activators of microglia (60, 174). In the second category, cell damage and death trigger the presentation of cell injury 
signals, such as membrane exposure of phosphatidylserine, or the release of ATP and sialic acid¡Vcontaining 
glycosphingolipids (e.g., gangliosides), which induce proinflammatory cytokine and ROS production in microglia (153, 
185). Additionally, hypoxia may be a direct signal for activation, because it triggers microglial expression of a 
proinflammatory cytokine, IL-1ƒÒ (111). Senile plaque¡Vassociated proteins, such as ƒÒ-amyloid and chromogranin 
A, are also strong signals that stimulate microglia (49, 52, 147). In the third category of regulatory signals, modulators 
from other cells, including certain surface molecules, cytokines, chemokines, and proteases, can activate and also 
regulate the function of microglia (see Figure 8.3). Interestingly, ATP is also an example of a regulatory signal 
released from astrocytes that can serve as a chemotactic, a mitogenic, and an apoptotic signal for microglia (100, 
185, 229).  
 
Microglial Migration and Proliferation  
 
Migration of microglia to sites of infection or injury can be observed in culture in hippocampal slices and in murine 
models of brain damage (171, 178, 184). Several chemotactic signals mediate the recruitment of microglia, as well as 
other immune cells, to areas of brain damage and, thus, are essential for the spatial coordination of a local 
neuroimmune response. Chemokines, such as monocyte chemoattractant protein-1 (MCP-1/CCL2), RANTES/CCL5, 
MCP-2/IL-8/CCL8, IFN-ƒ×¡Vinducing protein-10 (IP-10/CXCL10), are a family of chemoattractants known to stimulate 
microglial and other immune cell migration (56, 181). CXCR3, a chemokine receptor for CXCL10/IP-10, has been 
shown to promote microglial movement to a lesion site in the entorhinal cortex and increase local neuronal loss (184). 
Among other molecules, ATP, ƒÒ-amyloid, and complement factor 5a are also found to induce microglial migration 
(100, 117, 171). Chemotaxis will be important in cases of localized brain injury, such as in lacunar strokes (Figure 
8.5) , where damage in a small region may recruit outlying microglia to amplify local microgliosis. However, the role of 
chemotaxis in microglial response to global CNS insults is still unclear.  
 
Cell death is thought to activate microglial proliferation in experimental injury models of excitotoxicity and ischemia 
(68, 94, 119, 128). However, even in the absence of neuronal loss after transient global ischemia, microglial 
proliferation peaks within 4 days in the striatum and neocortex, suggesting that microgliosis does not require overt 
brain injury (128). In addition to cell death signals, various factors, such as macrophage colony-stimulating factor (M-
SCF) granulocyte-macrophage colony-stimulating factor (GM-CSF), corticotropin-releasing hormone, and thrombin, 
can stimulate microglial cell proliferation (113, 130, 154, 212, 238). The release of these factors together with cell 
death signals may synergistically contribute to the microglial proliferation observed during CNS damage. Interestingly, 



microglial numbers return to baseline levels 30 days after excitotoxic injury, indicating the removal of activated 
microglia after damage resolution (94). Cytokines, such as IL-4 and IL-13, induce apoptosis in microglia only after 
activation by lipopolysaccharide, gangliosides, or thrombin and may play a role in limiting the duration of microgliosis 
(245).  
 
Phagocytosis and Antigen Presentation by Microglia  
 
Phagocytosis is the receptor-mediated uptake of large extracellular particles and cells, and sets reactive microglia 
apart from reactive astrocytes. Antibodies and/or complement proteins can bind to and can target various substrates, 
such as myelin, for either Fc receptor¡Vmediated or complement receptor¡Vmediated phagocytosis, respectively (66, 
160, 222). Although apoptosis-triggered phosphatidylserine exposure on the outer membrane leaflet is the most well-
known mechanism of microglial phagocytosis of dying cells, other mechanisms for microglial recognition and 
phagocytosis of cells undergoing nonapoptotic and necrotic death also exist (98). Soluble signals, such as M-CSF, 
GM-CSF, TNF-ƒÑ, and IL-4, have also been shown to stimulate phagocytic clearance in vitro (154, 206). Antigen 
processing and presentation, as evidenced by increased MHC I and II surface expression, is also up-regulated in 
activated microglia after a variety of insults (27, 158). MHC expression is also increased by IFN-ƒ× and decreased by 
IFN-ƒÒ, indicating a dynamic regulation by cytokines (109). MHC presentation usually peaks with concomitant 
cytokine up-regulation as well as CD4+ and CD8+ T-lymphocyte infiltration into brain parenchyma, and, thus, initiates 
the adaptive neuroinflammatory response (26).  
 
Microglial activation and phagocytosis may facilitate additional neuronal cell death, but recent studies showing 
release of several anti-inflammatory and neuroprotective factors during phagocytosis suggest that not all signals of 
cellular damage induce proinflammatory reactivity and toxicity in microglia (65, 141, 215). It has not been resolved 
whether up-regulation of phagocytic function in microglia is beneficial or harmful. The clearance of pathogens, 
necrotic debris, and apoptotic cells is likely to promote healthy brain function and recovery from minor insults. 
However, targeting of intact myelin or healthy cells for destruction during unchecked neuroinflammation can be a 
direct cause of additional neuronal loss during the later phases of brain injury. Indeed, it has been reported that 24 
hours after transient exposure to ƒÒ-amyloid peptides, microglia continue to exhibit enhanced phagocytosis of 
several other unrelated substrates (114).  
 
Soluble Factors Released by Microglia  
 
During brain pathology or trauma, astrocytes, microglia, and infiltrating immune cells release and respond to both 
proinflammatory and anti-inflammatory cytokines (Figure 8.3). The role of each cytokine in brain damage and 
recovery has been difficult to analyze because of the antagonism, synergism, and redundancy inherent to the 
cytokine system (18, 148). Nevertheless, several cytokine mediators have been shown to be up-regulated after a 
variety of acute and chronic CNS insults, and many of these cytokines exacerbate glial responses to damage and 
promote neuronal cell loss in numerous brain injury and disease models (6). Among these, IL-1ƒÒ and TNF-ƒÑ are 
both up-regulated in microglia and astrocytes in cases of neurodegenerative diseases, stroke, epilepsy, brain trauma, 
and infection (19, 193, 195, 231, 233). Furthermore, both cytokines exacerbate neuronal degeneration in animal and 
cell culture models of these disorders (6, 175, 209). Specifically, exposure of cultured hippocampal neurons to IL-1ƒÒ 
induces tyrosine kinase¡Vmediated phosphorylation of NMDA receptor subunits NR2A/B, leading to consequent 
facilitation of calcium currents and increased neuronal cell death (232). TNF-ƒÑƒnhas also been recognized for its 
ability to cause cell death by both a direct p55 receptor¡Vmediated mechanism as well as an indirect suppression of 
survival signaling mechanism (228). TNF-ƒÑƒnrelease by astrocytes and microglia can suppress neurite growth and 
potentially inhibit neuronal regeneration after injury, whereas transgenic TNF-ƒÑ overexpression in the brain results 
in neuroinflammation, degeneration, ataxia, and epilepsy (3, 166).  
 
Activated microglia also release a variety of ROS and reactive nitrogen species resulting in oxidative stress and 
increased neuronal death (33, 51, 79, 143). Like cytokines, these substances are also observed at high levels in 
various neurodegenerative conditions (8). Inhibition of the inducible nitrogen oxide synthase (iNOS) after 
lipopolysaccharide administration into the substantia nigra can rescue dopaminergic neurons from cell death whereas 
microglia-secreted superoxide also contributes to degeneration of dopaminergic neurons (10, 79).  
 



Compared with cytokines, considerably less information exists regarding chemokine and chemokine receptor 
expression by glial cells during brain damage (15). Chemokine IL-8 release from microglia can promote immune cell 
infiltration and activation as well as perturb hippocampal synaptic plasticity (242). In general, chemokine inhibition has 
been effective in decreasing neutrophil and macrophage infiltration, as well as reducing lesion volumes in animal 
models of cerebral ischemia (21). 

 

Neuroprotective Roles of Microglia  
 
Although less recognized, protective effects of microglial activation during CNS injury have also been reported, and 
these may be therapeutically augmented. Microglial release of growth factors, such as brain-derived neurotrophic 
factor and glial cell line-derived neurotrophic factor, as well as production of certain cytokines, such as IL-6, 
transforming growth factor-ƒÒ (TGF-ƒÒ), and IFN-ƒ×, affords neuroprotective properties to microglial responses 
during brain injury and repair (29, 35, 76, 121, 162, 176, 177, 213, 240). Furthermore, activated microglia and 
incoming macrophages express excitatory amino acid transporters for glutamate uptake, suggesting a direct role in 
reduction of excitotoxicity (91, 192). The expression of the antioxidant, glutathione, and glutathione reductase is much 
higher in microglia than in neurons and astrocytes, and may protect against the ROS produced during normal 
oxidative metabolism in the brain and during neurodegeneration that is often accompanied by high oxidative stress 
(8, 97, 134).  
 
PART III: ASTROCYTIC RESPONSES TO CNS INJURY  
 
As previously discussed, astrocytes are versatile cells with a wide array of physiological functions (165). These cells 
express receptors for nearly all types of neuroactive molecules, including neurotransmitters, cytokines, and toxins. 
These receptors allow astrocytes to sense and respond to many perturbations to the normal environment. When 
damage occurs, astrocytes respond by migrating to the lesion and activating the expression of a number of genes 
(see Figs. 8.3 and 8.4) (39, 126).  
 
Astrocyte Hyperplasia and Hypertrophy  
 
Astrocytes proliferate in response to most forms of injury, at least in part, because of activation of a variety of G-
protein¡Vcoupled receptors, including endothelin, thrombin, serotonin, lysophosphatidic acid, and sphingosine-1-
phosphate (S1P). Activation of these receptors leads to an increase in intracellular calcium levels and activation of 
the mitogen-activated protein (MAP) kinase extracellular receptor kinase 1/2 (ERK1/2), which increases mitogenesis 
(13, 99, 137, 207). This proliferation occurs in astrocytes found close to the site of the lesion, but becomes less 
prevalent further away (71, 72).  
 
Although originally thought to be the critical step in the formation of the glial scar, evidence now shows that 
proliferation of astrocytes in gliosis is less important than cellular hypertrophy and thickening and lengthening of 
processes (32, 205). Any form of CNS damage will cause an increase in astrocytic expression of GFAP, which can 
be a considerable distance away from the actual site of injury. These reactive astrocytes become much larger and 
their once delicate processes become thicker, longer, and more numerous.  
 
Eventually, the astrocytic processes will interweave to become the boundary of the glial scar. Because of the density 
of these processes, it has classically been thought that the physical structure of the scar inhibits axon regrowth. This 
hypothesis has been revisited and evidence suggests that axonal regeneration through the scar towards a localized 
source of trophic factors is possible (108). Multiple in vivo and in vitro assays have shown that extracellular matrix 
molecules associated with the scar tissue itself are inhibitory to regeneration, suggesting that axonal growth inhibition 
by glial scars may be biochemical rather than physical in nature (63, 73, 146).  
 
Astrocyte Changes in Protein Expression  
 
Once activated, a variety of changes in protein expression is observed in astrocyte populations. Best known is the 



increase in GFAP observed in the reactive astrocyte population (190). This intermediate filament, along with vimentin 
and S 100, are the most commonly used markers to identify activated astrocytes both in vivo and in vitro (190). 
Interestingly, genetic knockouts of GFAP and vimentin have been shown in vitro to have improved survival and 
neurite growth, whereas in vivo double knockouts had improved functional and histological recovery after spinal cord 
hemisection, indicating the negative consequences of changes in astrocytes that require intermediate filaments (149, 
150). Likewise, one can also observe up-regulated expression of oxidoreductive enzymes required for increased 
energy use and metabolism (190). Further, there is increased expression and release of proteases and protease 
inhibitors that directly aggravate neuronal damage or are neuroprotective (36, 190). Reactive astrocytes also up-
regulate a variety of cell-surface receptors, such as epidermal growth factor (EGF) receptors, tyrosine kinase 
receptors, zinc receptor, and corticotrophin-releasing factor receptor, which serve to aid in cell-to-cell signaling during 
formation of the glial scar (190). These changes in protein expression can have opposing effects on scar formation 
and axonal regeneration. For example, expression of the zinc receptor, ZnT-1, in astrocytes is neuroprotective, 
whereas expression of the corticotropin releasing hormone receptor-1, promotes neurodegeneration (170, 208).  
 
Another molecule up-regulated in injury is tenascin, which is associated with astrocytes and is highly inhibitory to 
axon growth. In addition to its direct effects on axon growth, tenascin has binding sites for most of the inhibitory CS-
PGs. Reactive astrocytes are known to secrete the CS-PG, neurocan, into the extracellular matrix (11, 93, 145). 
Because many CS-PGs are not attached to the cell surface, tenascin acts as an adapter molecule and may 
determine whether or not the CS-PGs are retained in the area of damage (72). Through interactions with tenascin 
and the neural cell-adhesion molecule (NCAM), neurocan can inhibit axon growth (77, 188). Neurocan production in 
astrocytes is highly up-regulated by cytokines such as TGF-ƒÒ, TGF-ƒÑ, and EGF (72, 131, 132).  
 
Astrocyte Release of Cytokines and Other Factors  
 
Astrocytes are capable of producing a variety of cytokines, including interleukins (IL-1, IL-6, IL-10), and interferons 
(IFN-ƒÑ, IFN-ƒÒ), tumor necrosis factors (TNF-ƒÑ, TNF-ƒÒ), and a variety of growth factors (fibroblast growth factor, 
platelet-derived growth factor, nerve growth factor, and EGF) (70, 75, 190). As previously mentioned, the net effect of 
individual cytokines can be difficult to establish because the effects of many cytokines are strongly influenced by one 
another and because most cytokines have pleiotropic and cell-type specific effects. For example, IL-6 has been 
shown to protect against ischemic and excitotoxic injury, and hippocampal neurons treated with TNF-ƒÑ are less 
vulnerable to substrate deprivation and excitotoxicity (5, 46, 140). However, in vivo, IL-6 and TNF-ƒÑ have been 
shown to promote demyelination, thrombosis, leukocyte infiltration, and BBB disruption (70, 75). Thus, the specific 
contribution of astrocyte cytokine release to these processes in vivo remains to be established.  
 
Finally, astrocytes are known to release several growth factors, such as brain-derived neurotrophic factor and nerve 
growth factor. Astrocytes are stimulated to produce and release these neurotrophic factors by a variety of signals, 
including prostaglandins, ƒÒ-amyloid, ischemia, IL-1ƒÒ, TNF-ƒÑ, ROS, histamine, and dopamine. These 
neurotrophic factors are known to play a critical role in neuronal survival and differentiation (37, 151, 221, 227). 

PART II: MICROGLIAL RESPONSES TO CNS INJURY  
 
As the resident macrophages of the CNS, microglia are the primary source of innate and adaptive immune responses 
within the brain. They are main players in mediating neuroinflammatory cascades, by expressing and/or releasing a 
number of different cytokines, chemokines, and receptors (see Figure 8.31). Their ability to become activated 
throughout the course of neuropathic stimuli, such as invading pathogens, cell death, and hypoxia, allows microglia to 
respond to, and, at times, contribute to, neuropathology. Although neuroprotective and restorative roles of reactive 
microglia in models of acute and chronic neuropathologies have been documented, examples of the detrimental 
effects of microglial activation are evident in recent studies (1, 20, 141, 157, 166, 210). Not only is rapid microgliosis 
considered the most immediate and harmful of glial responses in the pathogenesis of acute CNS trauma, prolonged 
microgliosis is also known to exacerbate continuing damage in various neurodegenerative illnesses (88).  
 
Triggers and Regulators of Microgliosis  
 
As illustrated in (Fig. 5.4), microgliosis is characterized by a complex set of events, including changes in microglial 



morphology, increased proliferation, migration to a site of damage, phagocytosis, antigen processing and 
presentation, up-regulation of numerous cell surface and secreted signaling molecules, and apoptosis. Substances 
that trigger microgliosis fall into three categories: 1) those that signal the invasion of foreign organisms, 2) those that 
signal local cellular damage and death, and 3) regulatory signals from other cells.  
 
In the category of pathogen invasion signals, pathogen-associated molecular patterns, such as bacterial and viral 
surface proteins, sugars, and proteoglycans, as well as unmethylated DNA, are some of the most potent and reliable 
activators of microglia (60, 174). In the second category, cell damage and death trigger the presentation of cell injury 
signals, such as membrane exposure of phosphatidylserine, or the release of ATP and sialic acid¡Vcontaining 
glycosphingolipids (e.g., gangliosides), which induce proinflammatory cytokine and ROS production in microglia (153, 
185). Additionally, hypoxia may be a direct signal for activation, because it triggers microglial expression of a 
proinflammatory cytokine, IL-1ƒÒ (111). Senile plaque¡Vassociated proteins, such as ƒÒ-amyloid and chromogranin 
A, are also strong signals that stimulate microglia (49, 52, 147). In the third category of regulatory signals, modulators 
from other cells, including certain surface molecules, cytokines, chemokines, and proteases, can activate and also 
regulate the function of microglia (see Figure 8.3). Interestingly, ATP is also an example of a regulatory signal 
released from astrocytes that can serve as a chemotactic, a mitogenic, and an apoptotic signal for microglia (100, 
185, 229).  
 
Microglial Migration and Proliferation  
 
Migration of microglia to sites of infection or injury can be observed in culture in hippocampal slices and in murine 
models of brain damage (171, 178, 184). Several chemotactic signals mediate the recruitment of microglia, as well as 
other immune cells, to areas of brain damage and, thus, are essential for the spatial coordination of a local 
neuroimmune response. Chemokines, such as monocyte chemoattractant protein-1 (MCP-1/CCL2), RANTES/CCL5, 
MCP-2/IL-8/CCL8, IFN-ƒ×¡Vinducing protein-10 (IP-10/CXCL10), are a family of chemoattractants known to stimulate 
microglial and other immune cell migration (56, 181). CXCR3, a chemokine receptor for CXCL10/IP-10, has been 
shown to promote microglial movement to a lesion site in the entorhinal cortex and increase local neuronal loss (184). 
Among other molecules, ATP, ƒÒ-amyloid, and complement factor 5a are also found to induce microglial migration 
(100, 117, 171). Chemotaxis will be important in cases of localized brain injury, such as in lacunar strokes (Figure 
8.5) , where damage in a small region may recruit outlying microglia to amplify local microgliosis. However, the role of 
chemotaxis in microglial response to global CNS insults is still unclear.  
 
Cell death is thought to activate microglial proliferation in experimental injury models of excitotoxicity and ischemia 
(68, 94, 119, 128). However, even in the absence of neuronal loss after transient global ischemia, microglial 
proliferation peaks within 4 days in the striatum and neocortex, suggesting that microgliosis does not require overt 
brain injury (128). In addition to cell death signals, various factors, such as macrophage colony-stimulating factor (M-
SCF) granulocyte-macrophage colony-stimulating factor (GM-CSF), corticotropin-releasing hormone, and thrombin, 
can stimulate microglial cell proliferation (113, 130, 154, 212, 238). The release of these factors together with cell 
death signals may synergistically contribute to the microglial proliferation observed during CNS damage. Interestingly, 
microglial numbers return to baseline levels 30 days after excitotoxic injury, indicating the removal of activated 
microglia after damage resolution (94). Cytokines, such as IL-4 and IL-13, induce apoptosis in microglia only after 
activation by lipopolysaccharide, gangliosides, or thrombin and may play a role in limiting the duration of microgliosis 
(245). 

Phagocytosis and Antigen Presentation by Microglia  
 
Phagocytosis is the receptor-mediated uptake of large extracellular particles and cells, and sets reactive microglia 
apart from reactive astrocytes. Antibodies and/or complement proteins can bind to and can target various substrates, 
such as myelin, for either Fc receptor¡Vmediated or complement receptor¡Vmediated phagocytosis, respectively (66, 
160, 222). Although apoptosis-triggered phosphatidylserine exposure on the outer membrane leaflet is the most well-
known mechanism of microglial phagocytosis of dying cells, other mechanisms for microglial recognition and 
phagocytosis of cells undergoing nonapoptotic and necrotic death also exist (98). Soluble signals, such as M-CSF, 
GM-CSF, TNF-ƒÑ, and IL-4, have also been shown to stimulate phagocytic clearance in vitro (154, 206). Antigen 
processing and presentation, as evidenced by increased MHC I and II surface expression, is also up-regulated in 



activated microglia after a variety of insults (27, 158). MHC expression is also increased by IFN-ƒ× and decreased by 
IFN-ƒÒ, indicating a dynamic regulation by cytokines (109). MHC presentation usually peaks with concomitant 
cytokine up-regulation as well as CD4+ and CD8+ T-lymphocyte infiltration into brain parenchyma, and, thus, initiates 
the adaptive neuroinflammatory response (26).  
 
Microglial activation and phagocytosis may facilitate additional neuronal cell death, but recent studies showing 
release of several anti-inflammatory and neuroprotective factors during phagocytosis suggest that not all signals of 
cellular damage induce proinflammatory reactivity and toxicity in microglia (65, 141, 215). It has not been resolved 
whether up-regulation of phagocytic function in microglia is beneficial or harmful. The clearance of pathogens, 
necrotic debris, and apoptotic cells is likely to promote healthy brain function and recovery from minor insults. 
However, targeting of intact myelin or healthy cells for destruction during unchecked neuroinflammation can be a 
direct cause of additional neuronal loss during the later phases of brain injury. Indeed, it has been reported that 24 
hours after transient exposure to ƒÒ-amyloid peptides, microglia continue to exhibit enhanced phagocytosis of 
several other unrelated substrates (114).  
 
Soluble Factors Released by Microglia  
 
During brain pathology or trauma, astrocytes, microglia, and infiltrating immune cells release and respond to both 
proinflammatory and anti-inflammatory cytokines (Figure 8.3). The role of each cytokine in brain damage and 
recovery has been difficult to analyze because of the antagonism, synergism, and redundancy inherent to the 
cytokine system (18, 148). Nevertheless, several cytokine mediators have been shown to be up-regulated after a 
variety of acute and chronic CNS insults, and many of these cytokines exacerbate glial responses to damage and 
promote neuronal cell loss in numerous brain injury and disease models (6). Among these, IL-1ƒÒ and TNF-ƒÑ are 
both up-regulated in microglia and astrocytes in cases of neurodegenerative diseases, stroke, epilepsy, brain trauma, 
and infection (19, 193, 195, 231, 233). Furthermore, both cytokines exacerbate neuronal degeneration in animal and 
cell culture models of these disorders (6, 175, 209). Specifically, exposure of cultured hippocampal neurons to IL-1ƒÒ 
induces tyrosine kinase¡Vmediated phosphorylation of NMDA receptor subunits NR2A/B, leading to consequent 
facilitation of calcium currents and increased neuronal cell death (232). TNF-ƒÑƒnhas also been recognized for its 
ability to cause cell death by both a direct p55 receptor¡Vmediated mechanism as well as an indirect suppression of 
survival signaling mechanism (228). TNF-ƒÑƒnrelease by astrocytes and microglia can suppress neurite growth and 
potentially inhibit neuronal regeneration after injury, whereas transgenic TNF-ƒÑ overexpression in the brain results 
in neuroinflammation, degeneration, ataxia, and epilepsy (3, 166).  
 
Activated microglia also release a variety of ROS and reactive nitrogen species resulting in oxidative stress and 
increased neuronal death (33, 51, 79, 143). Like cytokines, these substances are also observed at high levels in 
various neurodegenerative conditions (8). Inhibition of the inducible nitrogen oxide synthase (iNOS) after 
lipopolysaccharide administration into the substantia nigra can rescue dopaminergic neurons from cell death whereas 
microglia-secreted superoxide also contributes to degeneration of dopaminergic neurons (10, 79).  
 
Compared with cytokines, considerably less information exists regarding chemokine and chemokine receptor 
expression by glial cells during brain damage (15). Chemokine IL-8 release from microglia can promote immune cell 
infiltration and activation as well as perturb hippocampal synaptic plasticity (242). In general, chemokine inhibition has 
been effective in decreasing neutrophil and macrophage infiltration, as well as reducing lesion volumes in animal 
models of cerebral ischemia (21).  
 
Neuroprotective Roles of Microglia  
 
Although less recognized, protective effects of microglial activation during CNS injury have also been reported, and 
these may be therapeutically augmented. Microglial release of growth factors, such as brain-derived neurotrophic 
factor and glial cell line-derived neurotrophic factor, as well as production of certain cytokines, such as IL-6, 
transforming growth factor-ƒÒ (TGF-ƒÒ), and IFN-ƒ×, affords neuroprotective properties to microglial responses 
during brain injury and repair (29, 35, 76, 121, 162, 176, 177, 213, 240). Furthermore, activated microglia and 
incoming macrophages express excitatory amino acid transporters for glutamate uptake, suggesting a direct role in 
reduction of excitotoxicity (91, 192). The expression of the antioxidant, glutathione, and glutathione reductase is much 



higher in microglia than in neurons and astrocytes, and may protect against the ROS produced during normal 
oxidative metabolism in the brain and during neurodegeneration that is often accompanied by high oxidative stress 
(8, 97, 134).  
 
PART III: ASTROCYTIC RESPONSES TO CNS INJURY  
 
As previously discussed, astrocytes are versatile cells with a wide array of physiological functions (165). These cells 
express receptors for nearly all types of neuroactive molecules, including neurotransmitters, cytokines, and toxins. 
These receptors allow astrocytes to sense and respond to many perturbations to the normal environment. When 
damage occurs, astrocytes respond by migrating to the lesion and activating the expression of a number of genes 
(see Figs. 8.3 and 8.4) (39, 126).  
 
Astrocyte Hyperplasia and Hypertrophy  
 
Astrocytes proliferate in response to most forms of injury, at least in part, because of activation of a variety of G-
protein¡Vcoupled receptors, including endothelin, thrombin, serotonin, lysophosphatidic acid, and sphingosine-1-
phosphate (S1P). Activation of these receptors leads to an increase in intracellular calcium levels and activation of 
the mitogen-activated protein (MAP) kinase extracellular receptor kinase 1/2 (ERK1/2), which increases mitogenesis 
(13, 99, 137, 207). This proliferation occurs in astrocytes found close to the site of the lesion, but becomes less 
prevalent further away (71, 72).  
 
Although originally thought to be the critical step in the formation of the glial scar, evidence now shows that 
proliferation of astrocytes in gliosis is less important than cellular hypertrophy and thickening and lengthening of 
processes (32, 205). Any form of CNS damage will cause an increase in astrocytic expression of GFAP, which can 
be a considerable distance away from the actual site of injury. These reactive astrocytes become much larger and 
their once delicate processes become thicker, longer, and more numerous.  
 
Eventually, the astrocytic processes will interweave to become the boundary of the glial scar. Because of the density 
of these processes, it has classically been thought that the physical structure of the scar inhibits axon regrowth. This 
hypothesis has been revisited and evidence suggests that axonal regeneration through the scar towards a localized 
source of trophic factors is possible (108). Multiple in vivo and in vitro assays have shown that extracellular matrix 
molecules associated with the scar tissue itself are inhibitory to regeneration, suggesting that axonal growth inhibition 
by glial scars may be biochemical rather than physical in nature (63, 73, 146).  
 
Astrocyte Changes in Protein Expression  
 
Once activated, a variety of changes in protein expression is observed in astrocyte populations. Best known is the 
increase in GFAP observed in the reactive astrocyte population (190). This intermediate filament, along with vimentin 
and S 100, are the most commonly used markers to identify activated astrocytes both in vivo and in vitro (190). 
Interestingly, genetic knockouts of GFAP and vimentin have been shown in vitro to have improved survival and 
neurite growth, whereas in vivo double knockouts had improved functional and histological recovery after spinal cord 
hemisection, indicating the negative consequences of changes in astrocytes that require intermediate filaments (149, 
150). Likewise, one can also observe up-regulated expression of oxidoreductive enzymes required for increased 
energy use and metabolism (190). Further, there is increased expression and release of proteases and protease 
inhibitors that directly aggravate neuronal damage or are neuroprotective (36, 190). Reactive astrocytes also up-
regulate a variety of cell-surface receptors, such as epidermal growth factor (EGF) receptors, tyrosine kinase 
receptors, zinc receptor, and corticotrophin-releasing factor receptor, which serve to aid in cell-to-cell signaling during 
formation of the glial scar (190). These changes in protein expression can have opposing effects on scar formation 
and axonal regeneration. For example, expression of the zinc receptor, ZnT-1, in astrocytes is neuroprotective, 
whereas expression of the corticotropin releasing hormone receptor-1, promotes neurodegeneration (170, 208).  
 
Another molecule up-regulated in injury is tenascin, which is associated with astrocytes and is highly inhibitory to 
axon growth. In addition to its direct effects on axon growth, tenascin has binding sites for most of the inhibitory CS-
PGs. Reactive astrocytes are known to secrete the CS-PG, neurocan, into the extracellular matrix (11, 93, 145). 



Because many CS-PGs are not attached to the cell surface, tenascin acts as an adapter molecule and may 
determine whether or not the CS-PGs are retained in the area of damage (72). Through interactions with tenascin 
and the neural cell-adhesion molecule (NCAM), neurocan can inhibit axon growth (77, 188). Neurocan production in 
astrocytes is highly up-regulated by cytokines such as TGF-β, TGF-α, and EGF (72, 131, 132). 

Astrocyte Release of Cytokines and Other Factors  
 
Astrocytes are capable of producing a variety of cytokines, including interleukins (IL-1, IL-6, IL-10), and interferons 
(IFN-ƒÑ, IFN-ƒÒ), tumor necrosis factors (TNF-ƒÑ, TNF-ƒÒ), and a variety of growth factors (fibroblast growth factor, 
platelet-derived growth factor, nerve growth factor, and EGF) (70, 75, 190). As previously mentioned, the net effect of 
individual cytokines can be difficult to establish because the effects of many cytokines are strongly influenced by one 
another and because most cytokines have pleiotropic and cell-type specific effects. For example, IL-6 has been 
shown to protect against ischemic and excitotoxic injury, and hippocampal neurons treated with TNF-ƒÑ are less 
vulnerable to substrate deprivation and excitotoxicity (5, 46, 140). However, in vivo, IL-6 and TNF-ƒÑ have been 
shown to promote demyelination, thrombosis, leukocyte infiltration, and BBB disruption (70, 75). Thus, the specific 
contribution of astrocyte cytokine release to these processes in vivo remains to be established.  
 
Finally, astrocytes are known to release several growth factors, such as brain-derived neurotrophic factor and nerve 
growth factor. Astrocytes are stimulated to produce and release these neurotrophic factors by a variety of signals, 
including prostaglandins, ƒÒ-amyloid, ischemia, IL-1ƒÒ, TNF-ƒÑ, ROS, histamine, and dopamine. These 
neurotrophic factors are known to play a critical role in neuronal survival and differentiation (37, 151, 221, 227).  
 
Neuroprotective Roles of Astrocytes  
 
In addition to the potentially harmful effects listed above, astrocytes also likely to protect recovering neurons and to 
help re-establish a homeostatic environment. Early hypotheses proposed that astrocytic activation helps recreate the 
glial limitans to separate neural (healthy) tissue from non-neural (dead) tissue (187). More recently, in a series of 
elegant experiments examining the protective role of astrocytes, Faulkner et al. generated a transgenic mouse that 
expressed the thymidine kinase from the herpes simplex virus under control of the GFAP promoter, which allowed 
selective ablation of astrocytes by administration of gancyclovir (71). Removal of astrocytes in this model system from 
the site of damage leads to larger lesions and increases breakdown of the BBB and inflammation. Their work 
suggests that astrocytes may be a necessary part of some healing process in the injured brain (39, 71). However, it 
remains unclear what role astrocytic debris plays in the exacerbation of injury observed in this model.  
 
Finally, blockade of the TGF-ƒÒ receptor with the proteoglycan decorin prevents glial scar formation in a rat model of 
cerebral hemisphere ischemia (132, 155). Davies et al. found that using decorin to block TGF-ƒÒ in a spinal cord 
injury model also decreased the number of reactive astrocytes and their subsequent release of a variety of CS-PGs 
(61). Yet, despite what might be considered positive effects of TGF-ƒÒ blockade, other data suggests that TGF-
ƒÒƒnreceptor blockade has no net effect on neuronal survival (155). TGF-ƒÒƒndoes regulate the production and 
release of neurocan, but not any of the other CS-PGs studied, consistent with data showing that TGF-ƒÒ blockade 
does not improve axonal growth, perhaps because of reduction in the release of extracellular matrix proteins, such as 
laminins, that are necessary for axonal regrowth (155). Clearly, more information is needed to understand the 
consequences of therapeutic manipulation of gliotic scarring.  
 
PART IV: THROMBIN AND THE GLIAL RESPONSE TO BRAIN INJURY  
 
Thrombin is a multifunctional serine protease first described for its fibrinolytic role in the blood-clotting cascade. In 
addition to its well-known role in blood hemostasis, thrombin may be involved in degenerative and protective 
mechanisms in the CNS. Activation of prothrombin to active thrombin and subsequent extravasation into CNS 
parenchyma has been implicated in the pathology of a number of CNS disorders, such as traumatic brain injury, 
stroke, and ischemia (4, 57, 58, 74, 85, 168). It has been shown that prothrombin messenger ribonucleic acid 
(mRNA) is up-regulated after several pathological situations in which glial scar formation is observed, such as 
cerebral ischemia and spinal cord injury (50, 191). Thrombin activity in the CNS is thought to be primarily regulated 
by a highly specific inhibitor, protease nexin-1 (85).  



 
Most of these extravascular effects of thrombin are mediated by receptors belonging to the family of PARs, which are 
proteolytically activated G protein¡Vcoupled receptors that are activated by proteolytic cleavage of the N-terminal 
exodomain of the receptor. This cleavage unmasks a new N-terminus that functions as a tethered ligand, docking 
intramolecularly on a receptor site to affect transmembrane signaling. Three protease-activated receptors, PAR-1, 3, 
and 4, have been identified as responding to thrombin, whereas PAR-2 is activated preferentially by trypsin-like 
proteases (mast cell tryptase, for example). PAR-1, the most well studied of the PARs, initiates signaling in astrocytes 
by heterotrimeric G-protein subunits, Gq/G11, Gi/Go, and G12/G13, which activate a variety of cellular pathways, 
including phosphoinositide hydrolysis, calcium mobilization, tyrosine/MAP kinase, and Rho kinase (139, 207). 
Because PAR-1 is expressed by both microglia and astrocytes and because PAR-1 activators enter the brain at sites 
of BBB breakdown, PAR-1 is particularly interesting in the context of glial scar formation (Fig. 5.4) (104, 167, 212, 
234).  
 
Thrombin as a Marker in Many Pathological Conditions  
 
Although thrombin levels in the brain are low under normal conditions, disruption of the BBB will result in leakage of 
thrombin from blood into brain parenchyma. This influx of thrombin can subsequently result in activation of PARs. 
PAR-1 activation may be an important feature of brain diseases that are characterized by the loss of BBB integrity, 
such as stroke, head trauma, status epilepticus, human immunodeficiency virus (HIV) encephalitis, and multiple 
sclerosis (17, 30, 55, 105). Indeed, when bleeding occurs directly within the brain tissue, active thrombin and other 
proteases will freely penetrate the interneuronal spaces by diffusion until clotting closes the injured vessels and 
thrombin becomes depleted from the clots or becomes bound by local inhibitors, such as protease nexin-1 (85). 
Clinical data show that subdural hematomas can elevate thrombin levels 250-fold in cerebrospinal fluid, from 100 
pmol/L to 25 nmol/L for a period of more than a week, suggesting that appreciable amounts of thrombin can be 
generated and persist at sites of cerebrovascular injury (214). More recently, a comparison of levels of the inactive 
form of thrombin, prothrombin, was performed in the cerebrospinal fluid of 67 individuals from six groups with different 
neurological disorders; this comparison suggested that the levels of prothrombin are reduced after a traumatic brain 
injury, suggesting an increase in the activation of prothrombin to thrombin in cerebrospinal fluid of patients (204).  
 
In addition to blood-derived thrombin, prothrombin mRNA is also expressed by cells within the CNS. Although 
thrombin was only detected at minimal levels in control brain tissue, the immunoreactivity of thrombin in astrocytes 
was markedly enhanced and more widespread in brains with HIV encephalitis or multiple sclerosis and after spinal 
cord injury; pathological conditions always associated with high glial reactivity (30, 191). Other potential activators of 
PAR-1 that are expressed in CNS tissue include plasmin and Factor Xa. However, we do not know whether these 
activators are up-regulated after brain injury (223, 243).  
 
Thrombin Modulates the Posttraumatic Inflammatory Response  
 
Thrombin has long been associated with inflammation, as shown by Nishino et al., who found that thrombin infusion 
into the rat caudate nucleus led to infiltration of inflammatory cells, reactive gliosis, scar formation, proliferation of 
mesenchymal cells, and induction of angiogenesis (168). More recently, a study showed that injection of thrombin 
into the substantia nigra is neurotoxic and triggers microglial activation and transient expression of iNOS, 
cyclooxygenase-2 (COX-2), and several proinflammatory cytokines, including IL 1ƒÒ, IL-6, and TNF-ƒÑ (48). 
Additionally, it seems that thrombin acts as a chemotactic agent for inflammatory cells, such as monocytes, 
macrophages, and neutrophils (25, 87, 103, 138, 212).  
 
PAR-1¡VMediated Effects of Thrombin in the Glial Scar Formation  
 
An increasing number of studies show a direct correlation between the size of the glial scar area and the extent of 
BBB breakdown, suggesting a major role of blood components in glial scar formation (202). Among blood-derived 
proteases, thrombin activation via activation of PAR-1 seems to be important in glial scar formation. Indeed, 
picomolar concentrations of thrombin or the PAR-1¡Vspecific agonist peptide can stimulate astrocyte proliferation in 
culture, indicating that thrombin extravasated from vasculature might be mitotic in vivo. Furthermore, the tyrosine 
kinase inhibitor, herbimycin A, and the kinase inhibitors, staurosporine and H7, can block thrombin-mediated cell 



proliferation in vitro (207, 235). Thrombin has also been proposed to up-regulate glial expression of thrombomodulin 
in in vitro models of injury (179).  
 
We have studied the involvement of PAR-1 in the initiation of astrogliosis in vivo (167, 207). Selective PAR-1 
activation can induce proliferation of GFAP-positive cells in the striatum, suggesting that activation of PAR-1 in 
isolation is sufficient to stimulate proliferation (167). Furthermore, we found that PAR-1−/− mice have a reduced 
astrocytic response to cortical stab wound at 7 days after injury. These data suggest that PAR-1 activation plays an 
important role in glial scar initiation after brain injury. The mechanisms by which PAR-1 stimulates glial proliferation 
and scar formation seem to involve the ability of PAR-1 to induce sustained ERK activation (167). In contrast to the 
transitory activation of ERK by other cytokines and growth factors, PAR-1 activation is able to induce a sustained 
ERK activation for many hours (95, 159, 164). This effect requires an interaction between Rho kinase and ERK, and 
the resulting sustained ERK activation is required to induce cyclin D1 expression and consequent astrocyte 
proliferation (167). These experiments link PAR-1 activation directly to control of the cell cycle. 

PART V. THERAPEUTIC INTERVENTIONS  
 
Experimental efforts to understand reactive gliosis have elucidated some of the complexities of glial responses to 
injury. Unfortunately, it remains unclear whether gliotic scars are harmful or protective, and how to manipulate glial 
responses to promote axonal regeneration. Nevertheless, a number of potential targets for intervention have 
emerged. For example, immunosuppressants, or agents that inhibit proinflammatory intracellular signaling, as well as 
antioxidants, have been successful in attenuating glial responses to injury and minimizing neuronal cell loss in a 
variety of injury models in vivo and in vitro. In particular, animal models of Alzheimer¡¦s Disease, excitotoxicity, and 
ischemia have shown that blockade of microglial and astrocytic activation using minocycline or COX-2 inhibitors can 
alleviate oxidative stress and reduce neuronal loss (41, 86, 115, 194, 198). Furthermore, frequent use of nonsteroidal 
anti-inflammatory drugs has been suggested to decrease the risk for Alzheimer¡¦s Disease, and Parkinson¡¦s disease, 
and clinical trials with nonsteroidal anti-inflammatory drug therapy have provided some promising results (44, 216). 
Likewise, antioxidant flavonoids, such as wogonin and silymarin, inhibit microglial TNF-ƒÑ, IL-1ƒÒ, and/or nitric oxide 
release after endotoxin or cytokine stimulation (118, 236). Wogonin additionally inhibits ischemic brain injury and 
lessens behavioral dysfunction caused by middle cerebral artery occlusion (47).  
 
Studies using animal models have found that anti¡VTGF-ƒÒ antibodies and anti¡VIL-6 receptor antibodies disrupt 
cytokine signaling and reduce glial scarring by several different measures. However, there was little change in axonal 
recovery (132, 155, 173). As previously mentioned, the effects of IL-6 and TGF-ƒÒ have a plethora of effects, 
including increasing receptor expression and inducing further cytokine release. However, interfering with less global, 
more specific signaling shows both enhanced axonal growth and decreased scar formation. For example, heparin 
oligosaccharides, which interfere with signaling through the fibroblast growth factor receptor, one of the receptors up-
regulated by TGF-ƒÒ, attenuate scar formation and promote recovery (96). Curcumin, a commonly used food spice 
(turmeric), was recently identified as an inhibitor of activated microglia that functions by suppressing intracellular 
signaling, thus, reducing iNOS and COX-2 activation and the consequent release of proinflammatory mediators (110). 
Similarly, curcumin can reduce the responses of other neuroglia, such as astrocytes and OPCs (7). Increased 
degradation of CS-PG through delivery of metabolic enzymes, such as chondroitinase ABC and xylosyltransferase-1, 
at the site of injury leads to less scar formation and allows for axonal growth around the core of neural damage 
observed in animal models of spinal cord injury (31, 92, 144, 156). There have also been several studies aimed at 
inhibition of proliferation of glial cells that have had moderately positive results. Rhodes et al. found that injecting 
cytosine arabinoside, a drug commonly used to inhibit proliferation, at the site of a lesion decreased the numbers of 
microglia and OPCs with little effect on reactive astrocytes and some increase in the number of axons found beyond 
the site of the lesion compared with controls. However, this effect was short-lived and diminished by 18 days after 
lesion (189).  
 
Finally, altering serine protease signaling could reveal much about glial¡Vneuronal interactions and improve our 
understanding of neuropathology and recovery. Blockade of PAR-1 in the nervous system might be a novel 
therapeutic approach for a range of pathological CNS insults. Striggow et al. showed that the thrombin antagonist, 
hirudin, protected hippocampal area CA1 pyramidal cells in vivo when applied before the onset of a severe global 
ischemia in gerbils, but impaired the ischemic preconditioning when applied before each short-lasting attack (211). 



Moreover, whole animal studies reveal that continuous infusion of argatroban, a synthetic thrombin inhibitor, 
significantly reduced the area of infarction and improved neurological deficits after middle cerebral artery occlusion 
(106, 172). Additionally, several clinical studies have found that argatroban is a safe antithrombolytic to administer 
within 48 hours of stroke onset, and one clinical study found that argatroban is effective in reducing neurological 
impairment caused by ischemic stroke (116, 226). All of these data suggest that thrombin inhibitors reduce the 
neurological deficit associated with stroke. However, more studies are necessary to determine whether the effect of 
thrombin inhibition is related to a vascular event, glial reactivity, and/or direct neuronal effects. Although the 
component pathways are complex and at times have opposing actions, they may provide greater therapeutic 
opportunities and allow for selective targeting of the effects that hinder CNS recovery. 
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Fig. 5.1 Glial scarring in human neurological disease. A, hematoxylin and eosin (H & E)–stained tissue section of a 

resolving cerebral infarction (stroke) showing a cavitary center (asterisk) filled with histiocytes and proteinaceous 

debris surrounded by a glial scar with numerous hypertrophic astrocytes (arrowheads). B, Luxol fast blue stain (for 

myelin) of a multiple sclerosis plaque, demonstrating a loss of myelin staining together with a perivascular and 

parenchymal macrophage infiltrate (asterisk). Abundant reactive astrocytes are present in regions surrounding the 

plaque (arrowheads). Normal white matter is present in the lower portion and stains blue. C, H & E–stained section of 

an abscess showing a necrotic center (asterisk) surrounded by numerous inflammatory cells and reactive astrocytes 

of the glial scar (arrowhead). All photographs: original magnification, ×200. 

Fig. 5.2 Cellular components of a glial scar. A, reactive (hypertrophic) astrocytes (arrow) are observed with H & E 

staining in a region surrounding a cavitary infarct (asterisk), where they have abundant pink cytoplasm and show 

increased cell density. B, immunohistochemical staining for GFAP in a region surrounding the infarct (asterisk) 

highlights the reactive astrocytes and their processes (arrow). C, microglia are a morphologically and functionally 

distinct component of a glial scar. Microglia are small, elongate, and have cigar-shaped nuclei with scanty cytoplasm 

(“rod cells”; arrowheads). All photographs: original magnification, ×400. 

Fig. 5.3 Some of the important substances released and/or expressed by activated microglia and astrocytes. List is 

not exclusive. Substances made by microglia are in normal font; substances made by astrocytes are underlined; and 

substances made by both microglia and astrocytes are in bold font 

Fig. 5.4 Cartoon representation of activation of microglia and astrocytes. A, microglia respond to variety of signals 

including pathogen invasion, cytokines, and cell death signals. Once activated, they become less ramified, proliferate, 

begin secreting proinflammatory cytokines, and up-regulate a number of receptor molecules. Additionally, microglia 

respond by undergoing apoptosis. B, similarly, astrocytes respond to injury, ischemia, and infection. In contrast to 

microglia, activated astrocytes have more processes and greatly hypertrophy. Like microglia, astrocytes release 

proinflammatory cytokines and up-regulate a variety of receptors. However, astrocytes also release a plethora of 

growth factors. 

Fig. 5.5 Immunohistochemistry of human stroke tissue. Postmortem sections of human brain with a lacunar stroke 

(hematoxylin; A and B). Activated astrocytes (arrows) can be detected around the lesion by the presence of large 

eosinophilic cytoplasm and eccentrically located nuclei (hematoxylin; B) and GFAP staining (fluorescein 

isothiocyanate, FITC; C). Double immunofluorescence performed with antibodies to GFAP (FITC; C) and human 

PAR-1 (Texas Red; D) shows the astrocytic localization of PAR-1; E 


